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Abstract
We consider the action of the Bethe algebra BK on

(⊗k
s=1Lλ(s)

)
λ

, the weight
subspace of weight λ of the tensor product of k polynomial irreducible
glN -modules with highest weights λ(1), . . . ,λ(k), respectively. The Bethe
algebra depends on N complex numbers K = (K1, . . . , KN). Under the
assumption that K1, . . . , KN are distinct, we prove that the image of BK in
End

((⊗k
s=1Lλ(s)

)
λ

)
is isomorphic to the algebra of functions on the intersection

of suitable Schubert cycles in the Grassmannian of N-dimensional spaces of
quasi-exponentials with exponents K. We also prove that the BK-module(⊗k

s=1Lλ(s)

)
λ

is isomorphic to the coregular representation of that algebra of
functions. We present a Bethe ansatz construction identifying the eigenvectors
of the Bethe algebra with points of that intersection of Schubert cycles.

PACS number: 11.25.Hf

1. Introduction

It has been proved recently in [MTV6] that the eigenvectors of the Bethe algebra of the glN
Gaudin model are in a bijective correspondence with Nth-order Fuchsian differential operators
with polynomial kernel and prescribed singularities. In this paper, we construct a variant of
this correspondence.

The Bethe algebra considered in [T, MTV6] admits a deformation BK depending on
N complex parameters K = (K1, . . . , KN) (see [CT, MTV1]). Under the assumption
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that K1, . . . , KN are distinct, we consider the Bethe algebra BK acting on
(⊗k

s=1Lλ(s)

)
λ

,
the weight subspace of weight λ of the tensor product of k polynomial irreducible glN -
modules with highest weights λ(1), . . . ,λ(k), respectively. We prove that the image of BK in
End

((⊗k
s=1Lλ(s)

)
λ

)
is isomorphic to the algebra of functions on the intersection of suitable

Schubert cycles in the Grassmannian of N-dimensional spaces of quasi-exponentials with
exponents K. We prove that the BK-module

(⊗k
s=1Lλ(s)

)
λ

is isomorphic to the coregular
representation of that algebra of functions. We present a Bethe ansatz construction identifying
the eigenvectors of the Bethe algebra BK with points of the considered intersection of Schubert
cycles (cf [MTV7]).

The obtained result means that the eigenvectors of BK are in a bijective correspondence
with suitable Nth-order differential operators with quasi-exponential kernel and prescribed
singularities. This correspondence reduces the multidimensional problem of diagonalization
of the Bethe algebra action to the one-dimensional problem of finding the corresponding
differential operators. A separation of variables in a quantum integrable model is a reduction
of a multidimensional spectral problem to a suitable one-dimensional problem, see for example
Sklyanin’s separation of variables in the gl2 Gaudin model. In that respect, our correspondence
can be viewed as ‘a separation of variables’ in the glN Gaudin model associated with BK (cf
[MTV7]).

The results of this paper and of [MTV6] are in the spirit of the glN geometric Langlands
correspondence, which, in particular, relates suitable commutative algebras of linear operators
acting on glN -modules with the properties of schemes of suitable Nth-order differential
operators.

The paper is organized as follows. In section 2, we discuss the representations of the
current algebra glN [t], in particular, Weyl modules. We introduce the Bethe algebra BK as
a subalgebra of U(glN [t]) in section 3. In section 4, we describe the affine space �λ of
collections of N quasi-exponentials and discuss the properties of the algebra of functions on
that space. In section 5, we introduce a collection of (Schubert) subvarieties in the space �λ

and consider the algebra of functions on the intersection of the subvarieties. We prove the
main results of the paper, theorems 6.3, 6.7, 6.9 and 6.12, in section 6. Section 7 describes the
applications.

In this paper, we are using the same strategy as we used in [MTV6] with suitable technical
modifications. We approach the final result on the action of the Bethe algebra BK on a tensor
product of irreducible polynomial glN -modules in three major steps. First, we consider the
glN [t]-action on the space VS of vector-valued polynomials in several variables z1, . . . , zn,
equivariant with respect to permutations of the variables (see section 2.5). The Bethe algebra
BK acts on a weight subspace (VS)λ. We show that the image of BK in End((VS)λ) is a
free polynomial algebra, and it can be naturally identified with the algebra of functions on the
affine space �λ of collections of quasi-exponentials (see theorems 6.3 and 6.7).

The space (VS)λ, the image of BK in End((VS)λ) and the algebra of functions on �λ are
modules over the algebra of symmetric polynomials in z1, . . . , zn. For the second step we take
the quotients by the ideal Ia, given in section 2.4. As a result, we obtain an isomorphism of
the image of the Bethe algebra BK acting on a weight subspace of a Weyl module over glN [t]
and the algebra of functions on a preimage of a point under the Wronski map π : �λ → C

n,
defined in section 4.4. Theorem 6.9 gives the precise statement.

The third step is to identify a weight subspace of a tensor product of irreducible polynomial
glN -modules as a BK-module with a suitable BK-submodule of the corresponding weight
subspace of the Weyl module. To get theorem 6.12, we show that such an identification
amounts to a reduction of the algebra of functions on a preimage of a point under the Wronski
map to the algebra of functions on the intersection of the Schubert subvarieties, introduced in
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section 5. Equality of dimensions (5.4), provided by Schubert calculus, plays a key role at the
third step.

A reader familiar with the Bethe ansatz for the glN Gaudin model can have an overview
of the main results without proofs in sections 2.1, 2.2, 3.1, 7.1 and 8. This extraction can be
read independently from the other content of the paper.

The results of this paper are related to the results on the glN -opers with an irregular
singularity in the recent paper [FFR].

2. Representations of current algebra glN [t]

2.1. Lie algebra glN

Let eij , i, j = 1, . . . , N , be the standard generators of the Lie algebra glN satisfying the
relations [eij , esk] = δjseik − δikesj . We identify the Lie algebra slN with the subalgebra in
glN generated by the elements eii − ejj and eij for i �= j, i, j = 1, . . . , N . We denote by
h ⊂ glN the subalgebra generated by eii , i = 1, . . . , N . The subalgebra zN ⊂ glN generated
by the element

∑N
i=1 eii is central. The Lie algebra glN is canonically isomorphic to the direct

sum slN ⊕ zN .
Given an N × N matrix A with possibly noncommuting entries aij , we define its row

determinant to be

rdet A =
∑
σ∈SN

(−1)σ a1σ(1)a2σ(2) . . . aNσ(N). (2.1)

Let Z(x) be the following polynomial in a variable x with coefficients in U(glN):

Z(x) = rdet

⎛
⎜⎜⎝

x − e11 −e21 . . . −eN1

−e12 x + 1 − e22 . . . −eN2

. . . . . . . . . . . .

−e1N −e2N . . . x + N − 1 − eNN

⎞
⎟⎟⎠ . (2.2)

The next statement was proved in [HU] (see also [MNO, section 2.11]).

Theorem 2.1. The coefficients of the polynomial Z(x) − xN are free generators of the center
of U(glN).

Let M be a glN -module. A vector v ∈ M has weight λ = (λ1, . . . , λN) ∈ C
N if eiiv = λiv

for i = 1, . . . , N . A vector v is called singular if eij v = 0 for 1 � i < j � N . If v is a
singular of weight λ, then

Z(x)v =
N∏

i=1

(x − λi + i − 1) · v. (2.3)

We denote by (M)λ the subspace of M of weight λ, by (M)sing the subspace of M of all
singular vectors and by (M)

sing
λ the subspace of M of all singular vectors of weight λ.

Denote by Lλ the irreducible finite-dimensional glN -module with highest weight λ. Any
finite-dimensional glN -module M is isomorphic to the direct sum

⊕
λ Lλ ⊗ (M)

sing
λ , where

the spaces (M)
sing
λ are considered as trivial glN -modules.

The glN -module L(1,0,...,0) is the standard N-dimensional vector representation of glN . We
denote it by V . We choose a highest weight vector in V and denote it by v+.

A glN -module M is called polynomial if it is isomorphic to a submodule of V ⊗n for
some n.

3
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A sequence of integers λ = (λ1, . . . , λN) such that λ1 � λ2 � · · · � λN � 0 is called a
partition with at most N parts. Set |λ| = ∑N

i=1 λi . Then it is said that λ is a partition of |λ|.
The glN -module V ⊗n contains the module Lλ if and only if λ is a partition of n with at

most N parts.
For a Lie algebra g, we denote by U(g) the universal enveloping algebra of g.

2.2. Current algebra glN [t]

Let glN [t] = glN ⊗ C[t] be the Lie algebra of glN -valued polynomials with the pointwise
commutator. We call it the current algebra. We identify the Lie algebra glN with the
subalgebra glN ⊗ 1 of constant polynomials in glN [t]. Hence, any glN [t]-module has the
canonical structure of a glN -module.

The standard generators of glN [t] are eij ⊗ t r , i, j = 1, . . . , N, r ∈ Z�0. They satisfy
the relations [eij ⊗ t r , esk ⊗ tp] = δjseik ⊗ t r+p − δikesj ⊗ t r+p.

The subalgebra zN [t] ⊂ glN [t] generated by the elements
∑N

i=1 eii ⊗ t r , r ∈ Z�0, is
central. The Lie algebra glN [t] is canonically isomorphic to the direct sum slN [t] ⊕ zN [t].

It is convenient to collect elements of glN [t] in generating series of a variable u. For
g ∈ glN , set

g(u) =
∞∑

s=0

(g ⊗ t s)u−s−1.

For each a ∈ C, there exists an automorphism ρa of glN [t], ρa : g(u) �→ g(u−a). Given
a glN [t]-module M, we denote by M(a) the pull-back of M through the automorphism ρa . As
glN -modules, M and M(a) are isomorphic by the identity map.

For any glN [t]-modules L,M and any a ∈ C, the identity map (L ⊗ M)(a) →
L(a) ⊗ M(a) is an isomorphism of glN [t]-modules.

We have the evaluation homomorphism, ev : glN [t] → glN , ev : g(u) �→ gu−1. Its
restriction to the subalgebra glN ⊂ glN [t] is the identity map. For any glN -module M,
we denote by the same letter the glN [t]-module, obtained by pulling M back through the
evaluation homomorphism. For each a ∈ C, the glN [t]-module M(a) is called an evaluation
module.

If b1, . . . , bn are distinct complex numbers and L1, . . . , Ln are irreducible finite-
dimensional glN -modules, then the glN [t]-module ⊗n

s=1Ls(bs) is irreducible.
We have a natural Z�0-grading on glN [t] such that for any g ∈ glN , the degree of g ⊗ t r

equals r. We set the degree of u to be 1. Then the series g(u) is homogeneous of degree −1.
A glN [t]-module is called graded if it has a Z�0-grading compatible with the grading of

glN [t]. Any irreducible graded glN [t]-module is isomorphic to an evaluation module L(0) for
some irreducible glN -module L (see [CG]).

Let M be a Z�0-graded space with finite-dimensional homogeneous components. Let
Mj ⊂ M be the homogeneous component of degree j . We call the formal power series in a
variable q,

chM(q) =
∞∑

j=0

(dim Mj)q
j ,

the graded character of M.

2.3. Weyl modules

Let Wm be the glN [t]-module generated by a vector vm with the defining relations:
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eii(u)vm = δ1i

m

u
vm, i = 1, . . . , N,

eij (u)vm = 0, 1 � i < j � N,

(eji ⊗ 1)mδ1i+1vm = 0, 1 � i < j � N.

As an slN [t]-module, the module Wm is isomorphic to the Weyl module from [CL, CP],
corresponding to the weight mω1, where ω1 is the first fundamental weight of slN . Note that
W1 = V (0).

Lemma 2.2. The module Wm has the following properties.

(a) The module Wm has a unique grading such that Wm is a graded glN [t]-module and the
degree of vm equals 0.

(b) As a glN -module, Wm is isomorphic to V ⊗m.
(c) A glN [t]-module M is an irreducible subquotient of Wm if and only if M has the form

Lλ(0), where λ is a partition of m with at most N parts.

Proof. The first two properties are proved in [CP]. The third property follows from the first
two. �

For each b ∈ C, the glN [t]-module Wm(b) is cyclic with a cyclic vector vm.

Lemma 2.3. The module Wm(b) has the following properties.

(i) As a glN -module, Wm(b) is isomorphic to V ⊗m.
(ii) A glN [t]-module M is an irreducible subquotient of Wm(b) if and only if M has the form

Lλ(b), where λ is a partition of m with N parts.
(iii) For any natural numbers n1, . . . , nk and distinct complex numbers b1, . . . , bk , the glN [t]-

module ⊗k
s=1Wns

(bs) is cyclic with a cyclic vector ⊗k
s=1vns

.
(iv) Let M be a cyclic finite-dimensional glN [t]-module with a cyclic vector v satisfying

eij (u)v = 0 for 1 � i < j � N , and eii(u)v = δ1i

( ∑k
s=1 ns/(u−bs)

)
v for i = 1, . . . , N .

Then there exists a surjective glN [t]-module homomorphism ⊗k
s=1Wns

(bs) → M sending
⊗k

s=1vns
to v.

Given sequences n = (n1, . . . , nk) of natural numbers and b = (b1, . . . , bk) of distinct
complex numbers, we call the glN [t]-module ⊗k

s=1Wns
(bs) the Weyl module associated with

n and b.

Corollary 2.4. A glN [t]-module M is an irreducible subquotient of ⊗k
s=1Wns

(bs) if and only
if M has the form ⊗k

s=1Lλ(s) (bs), where λ(1), . . . ,λ(k) are partitions with at most N parts such
that |λ(s)| = ns, s = 1, . . . , k.

Consider the Z�0-grading of the vector space Wm, introduced in lemma 2.2. Let W
j
m be

the homogeneous component of Wm of degree j and W̄
j
m = ⊕r�jW

r
m. Since the glN [t]-module

Wm is graded and Wm = Wm(b) as vector spaces, Wm(b) = W̄ 0
m ⊃ W̄ 1

m ⊃ · · · is a descending
filtration of glN [t]-submodules. This filtration induces the structure of the associated graded
glN [t]-module on the vector space Wm which we denote by grWm(b).

Lemma 2.5. The glN [t]-module grWm(b) is isomorphic to the evaluation module (V ⊗m)(b).

The space ⊗k
s=1Wns

has a natural Z
k
�0-grading, induced by the gradings on the factors,

and the associated descending Z
k
�0-filtration by the subspaces ⊗k

s=1W̄
js
ns

, invariant with respect

5
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to the glN [t]-action on the module ⊗k
s=1Wns

(bs). We denote by gr
(⊗k

s=1Wns
(bs)

)
the induced

structure of the associated graded glN [t]-module on the space ⊗k
s=1Wns

.

Lemma 2.6. The glN [t]-modules gr
(⊗k

s=1Wns
(bs)

)
and ⊗k

s=1grWns
(bs) are canonically

isomorphic.

The proofs of lemmas 2.3, 2.5, 2.6, and corollary 2.4 can be found in [MTV6].

2.4. Remark on representations of symmetric group

Let Sn be the group of permutations of n elements. We denote by C[Sn] the regular
representation of Sn. Given an Sn-module M we denote by MS the subspace of all Sn-invariant
vectors in M.

Lemma 2.7. Let U be a finite-dimensional Sn-module. Then dim(U ⊗ C[Sn])S = dim U .

The group Sn acts on the algebra C[z1, . . . , zn] by permuting the variables. Let
σs(z), s = 1, . . . , n, be the sth elementary symmetric polynomial in z1, . . . , zn. The
algebra of symmetric polynomials C[z1, . . . , zn]S is a free polynomial algebra with generators
σ1(z), . . . , σn(z). It is well known that the algebra C[z1, . . . , zn] is a free C[z1, . . . , zn]S-
module of rank n! (see [M]).

Given a = (a1, . . . , an) ∈ C
n, denote by Ia ⊂ C[z1, . . . , zn] the ideal generated by the

polynomials σs(z) − as, s = 1, . . . , n. The ideal Ia is Sn-invariant.

Lemma 2.8. For any a ∈ C
n, the Sn-representation C[z1, . . . , zn]/Ia is isomorphic to the

regular representation C[Sn].

2.5. The glN [t]-module VS

Let V be the space of polynomials in z1, . . . , zn with coefficients in V ⊗n,

V = V ⊗n ⊗C C[z1, . . . , zn].

The space V ⊗n is embedded in V as the subspace of constant polynomials.
Abusing notation, for any v ∈ V ⊗n and p(z1, . . . , zn) ∈ C[z1, . . . , zn], we will write

p(z1, . . . , zn)v instead of v ⊗ p(z1, . . . , zn).
We make the symmetric group Sn act on V by permuting the factors of V ⊗n and the

variables z1, . . . , zn simultaneously,

σ(p(z1, . . . , zn)v1 ⊗ · · · ⊗ vn) = p(zσ1 , . . . , zσn
)v(σ−1)1 ⊗ · · · ⊗ v(σ−1)n , σ ∈ Sn.

We denote by VS the subspace of Sn-invariants in V .

Lemma 2.9 ([MTV6]). The space VS is a free C[z1, . . . , zn]S-module of rank Nn.

We consider the space V as a glN [t]-module with the series g(u), g ∈ glN , acting by

g(u)(p(z1, . . . , zn)v1 ⊗ · · · ⊗ vn) = p(z1, . . . , zn)

n∑
s=1

v1 ⊗ · · · ⊗ gvs ⊗ · · · ⊗ vn

u − zs

. (2.4)

Lemma 2.10 ([MTV6]). The image of the subalgebra U(zN [t]) ⊂ U(glN [t]) in End(V)

coincides with the algebra of operators of multiplication by elements of C[z1, . . . , zn]S .

The glN [t]-action on V commutes with the Sn-action. Hence, VS is a glN [t]-submodule
of V .

6
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Consider the grading on C[z1, . . . , zn] such that deg zi = 1 for all i = 1, . . . , n. We define
a grading on V by setting deg(v ⊗ p) = deg p for any v ∈ V ⊗n and any p ∈ C[z1, . . . , zn].
The grading on V induces a natural grading on End(V).

Lemma 2.11. The glN [t]-modules V and VS are graded.

The following lemma is contained in [K].

Lemma 2.12. The glN [t]-module VS is cyclic with a cyclic vector v⊗n
+ .

Lemma 2.13. For any partition λ of n with at most N parts, the graded character of the space
(VS)λ is given by

ch(VS )λ(q) =
N∏

i=1

1

(q)λi

, (2.5)

where (q)a = ∏a
j=1(1 − qj ).

Proof. A basis of (VS)λ is given by the Sn-orbits of the V ⊗n-valued polynomials of the form

p(z1, . . . , zn)(v+)
⊗λ1 ⊗ (e21v+)

⊗λ2 ⊗ · · · ⊗ (eN1v+)
⊗λN

where p(z1, . . . , zn) is a polynomial symmetric with respect to the first λ1 variables, symmetric
with respect to the next λ2 variables and so on, and finally symmetric with respect to the last
λN variables. Clearly, the graded character of the space of such polynomials is given by
formula (2.5). �

2.6. Weyl modules as quotients of VS

Let a = (a1, . . . , an) ∈ C
n be a sequence of complex numbers and Ia ⊂ C[z1, . . . , zn] the

ideal, defined in section 2.4. Define

IV
a =

(
V ⊗n

⊕
Ia

)
⊕ VS. (2.6)

Clearly, IV
a is a glN [t]-submodule of VS .

Introduce distinct complex numbers b1, . . . , bk and natural numbers n1, . . . , nk by the
relation

k∏
s=1

(u − bs)
ns = un +

n∑
j=1

(−1)j aju
n−j . (2.7)

Clearly,
∑k

s=1 ns = n.

Lemma 2.14 ([MTV6]). The glN [t]-modules VS
/
IV
a and ⊗k

s=1Wns
(bs) are isomorphic.

3. Bethe algebra

3.1. Universal differential operator

Let K = (K1, . . . , KN) be a sequence of distinct complex numbers. Let ∂ be the operator of
differentiation in a variable u. Define the universal differential operator DB by

DB = rdet

⎛
⎜⎜⎝

∂ − K1 − e11(u) −e21(u) . . . −eN1(u)

−e12(u) ∂ − K2 − e22(u) . . . −eN2(u)

. . . . . . . . . . . .

−e1N(u) −e2N(u) . . . ∂ − KN − eNN(u)

⎞
⎟⎟⎠ .

7
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It is a differential operator in the variable u, whose coefficients are formal power series in u−1

with coefficients in U(glN [t]),

DB = ∂N +
N∑

i=1

Bi(u)∂N−i , (3.1)

where

Bi(u) =
∞∑

j=0

Biju
−j (3.2)

and Bij ∈ U(glN [t]) for i = 1, . . . , N, j � 0.

Lemma 3.1. We have

B1(u) = −
N∑

i=1

(Ki + eii(u)) (3.3)

and
N∑

i=0

Bi0α
N−i =

N∏
i=1

(α − Ki), (3.4)

where α is a variable and B00 = 1.

Lemma 3.2. The element Bij ∈ U(glN [t])i = 1, . . . , N, j � 1 is a sum of homogeneous
elements of degrees j − 1, j − 2, . . . , max(j − i, 0).

Proof. It is straightforward to see that the series Bi(u) − σi(K1, . . . , KN), where σi is the ith
elementary symmetric polynomial, is a sum of homogeneous series of degrees −1, . . . ,−i.
The lemma follows. �

We call the unital subalgebra of U(glN [t]) generated by Bij , with i = 1, . . . , N, j � 0,
the Bethe algebra and denote it by B.

Theorem 3.3 ([CT, MTV1]). The algebra B is commutative. The algebra B commutes with
the subalgebra U(h) ⊂ U(glN [t]).

3.2. B-modules

Let Λ = (λ(1), . . . ,λ(k)) be a sequence of partitions with at most N parts and b1, . . . , bk

distinct complex numbers.
Let A1(u), . . . , AN(u) be the Laurent series in u−1 obtained by projecting coefficients of

the series Bi(u)
∏k

s=1(u − bs)
i to End

(⊗k
s=1Lλ(s) (bs)

)
.

The following lemma was proved in [MTV2].

Lemma 3.4. The series A1(u), . . . , AN(u) are polynomials in u. Moreover, the operators
Ai(bs), i = 1, . . . , N, s = 1, . . . , k, are proportional to the identity operator, and

N∑
i=0

Ai(bs)

N−i−1∏
j=0

(α − j) =
N∏

l=1

(
α − λ

(s)
l − N + l

)
, s = 1, . . . , k,

where α is a variable and A0(u) = 1.

8
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Proof. Consider the homomorphism U(glN [t]) → (U(glN))⊗k ,

g(u) �→
k∑

s=1

1⊗(s−1) ⊗ g ⊗ 1⊗(k−s)

u − bs

, g ∈ glN. (3.5)

Let Ãi(u), i = 1, . . . , N , be the Laurent series in u−1 obtained by projecting coefficients of
the series Bi(u)

∏k
s=1(u − bs)

i to (U(glN))⊗k . The series Ã1(u), . . . , ÃN (u) are polynomials
in u, and by a straightforward calculation

N∑
i=0

Ãi(bs)

N−i−1∏
j=0

(α − j) = 1⊗(s−1) ⊗ Z(α − N + 1) ⊗ 1⊗(k−s), s = 1, . . . , k,

where Ã0(u) = 1. The lemma follows from theorem 2.1 and formula (2.3). �

Let Ci(u), i = 1, . . . , N , be the Laurent series in u−1 obtained by projecting coefficients
of the series Bi(u)

∏n
s=1(u − zs) to End(VS).

Lemma 3.5. The series C1(u), . . . , CN(u) are polynomials in u.

Proof. The statement is a corollary of theorem 2.1 in [MTV3]. �

Set ns = |λ(s)|, s = 1, . . . , k. Let C̄i(u), i = 1, . . . , N , be the Laurent series in u−1

obtained by projecting coefficients of the series Bi(u)
∏k

s=1(u − bs)
ns to End

(⊗k
s=1Wns

(bs)
)
.

Corollary 3.6. The series C̄1(u), . . . , C̄N (u) are polynomials in u.

Proof. The claim follows from lemmas 2.14 and 3.5. �

Corollary 3.7. The products Ai(u)
∏k

s=1(u − bs)
ns−i , i = 1, . . . , k, are polynomials in u.

Proof. The claim follows from lemma 2.4 and corollary 3.6. �

Let M be a glN [t]-module. As a subalgebra of U(glN [t]), the algebra B acts on M. If
H ⊂ M is a B-invariant subspace, then we call the image of B in End(H) the Bethe algebra
associated with H. Since B commutes with U(h), it preserves the weight subspaces (M)λ.

In what follows we study the action of the Bethe algebra B on the following B-modules:
(VS)λ,

(⊗k
s=1Wns

(bs)
)
λ
,
(⊗k

s=1Lλ(s) (bs)
)
λ
.

4. Spaces of quasi-exponentials and the Wronski map

4.1. Spaces of quasi-exponentials

Let K = (K1, . . . , KN) be a sequence of distinct complex numbers. Let λ be a partition
of n with at most N parts. Let �λ be the affine n-dimensional space with coordinates
fij , i = 1, . . . , N, j = 1, . . . , λi .

Introduce

fi(u) = eKiu(uλi + fi1u
λi−1 + · · · + fiλi

), i = 1, . . . , N. (4.1)

We identify points X ∈ �λ with N-dimensional complex vector spaces generated by quasi-
exponentials

fi(u,X) = eKiu(uλi + fi1(X)uλi−1 + · · · + fiλi
(X)), i = 1, . . . , N. (4.2)

9
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Denote by Oλ the algebra of regular functions on �λ. It is the polynomial algebra in the
variables fij . Define a grading on Oλ such that the degree of the generator fij equals j for all
(i, j).

Lemma 4.1. The graded character of Oλ is given by the formula

chOλ
(q) =

N∏
i=1

1

(q)λi

.

4.2. Another realization of Oλ

For arbitrary functions g1(u), . . . , gN(u), introduce the Wronskian by the formula

Wr(g1(u), . . . , gN(u)) = det

⎛
⎜⎜⎜⎝

g1(u) g′
1(u) . . . g

(N−1)
1 (u)

g2(u) g′
2(u) . . . g

(N−1)
2 (u)

. . . . . . . . . . . .

gN(u) g′
N(u) . . . g

(N−1)
N (u)

⎞
⎟⎟⎟⎠ .

Let fi(u), i = 1, . . . , N , be the generating functions given by (4.1). We have

Wr(f1(u), . . . , fN(u)) = e
∑N

i=1 Kiu
∏

1�i<j�N

(Kj − Ki)

(
un +

n∑
s=1

(−1)sΣsu
n−s

)
, (4.3)

where Σ1, . . . , Σn are elements of Oλ. Define the differential operator DO
λ by

DO
λ = 1

Wr(f1(u), . . . , fN(u))
rdet

⎛
⎜⎜⎜⎝

f1(u) f ′
1(u) . . . f

(N)
1 (u)

f2(u) f ′
2(u) . . . f

(N)
2 (u)

. . . . . . . . . . . .

1 ∂ . . . ∂N

⎞
⎟⎟⎟⎠ . (4.4)

It is a differential operator in the variable u, whose coefficients are formal power series in u−1

with coefficients in Oλ,

DO
λ = ∂N +

N∑
i=1

Fi(u)∂N−i , (4.5)

where

Fi(u) =
∞∑

j=0

Fiju
−j , (4.6)

and Fij ∈ Oλ, i = 1, . . . , N, j � 0.
Define the characteristic polynomial of the operator DO

λ at infinity by

χ(α) =
N∑

i=0

Fi0α
N−i , (4.7)

where α is a variable and F00 = 1.

Lemma 4.2. We have

χ(α) =
N∏

i=1

(α − Ki),

N∑
i=1

Fi1α
N−i =

N∑
i=1

λi

N∏
j=1
j �=i

(α − Kj).

10
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Proof. We have DO
λ fi(u) = 0 for all i = 1, . . . , N . Taking the coefficient of uλi of the

series e−KiuDO
λ fi(u), we get χ(Ki) = 0, for all i = 1, . . . , N . This implies the first equality.

The second equality follows similarly from considering the coefficient of uλi−1 of the series
e−KiuDO

λ fi(u). �

Lemma 4.3. The functions Fij ∈ Oλ, i = 1, . . . , N, j � 0, generate the algebra Oλ.

Proof. The coefficient of uλi−j−1 of the series e−KiuDO
λ fi(u) has the form

−jfij

N∏
j=1
j �=i

(Ki − Kj) +
N∑

l=1

(
1∑

r=0

j−1∑
s=0

cij lrsFlrfis +
j∑

r=2

j−r+1∑
s=0

cij lrsFlrfis

)
, (4.8)

where cij lrs are some numbers. Since DO
λ fi(u) = 0, we can express recursively the elements

fij via the elements Flr starting with j = 1 and then increasing the second index j . �

4.3. Frobenius algebras

In this section, we recall some simple facts from commutative algebra. The word algebra will
stand for an associative unital algebra over C.

Let A be a commutative algebra. The algebra A considered as an A-module is called the
regular representation of A. The dual space A∗ is naturally an A-module, which is called the
coregular representation.

Clearly, the image of A in End(A) for the regular representation is a maximal commutative
subalgebra. If A is finite dimensional, then the image of A in End(A∗) for the coregular
representation is a maximal commutative subalgebra as well.

If M is an A-module and v ∈ M is an eigenvector of the A-action on M with eigenvalue
ξv ∈ A∗, that is, av = ξv(a)v for any a ∈ A, then ξv is a character of A, that is,
ξv(ab) = ξv(a)ξv(b).

If an element v ∈ A∗ is an eigenvector of the coregular action of A, then v is proportional
to the character ξv . Moreover, each character ξ ∈ A∗ is an eigenvector of the coregular action
of A and the corresponding eigenvalue equals ξ .

A nonzero element ξ ∈ A∗ is proportional to a character if and only if ker ξ ⊂ A is an
ideal. Clearly, A/ ker ξ � C. On the other hand, if m ⊂ A is an ideal such that A/m � C,
then m is a maximal proper ideal and m = ker ζ for some character ζ .

A commutative algebra A is called local if it has a unique ideal m such that A/m � C.
In other words, a commutative algebra A is local if it has a unique character. It is easy to see
that any proper ideal of the local algebra A is contained in the ideal m.

It is known that any finite-dimensional commutative algebra A is isomorphic to a direct
sum of local algebras, and the local summands are in bijection with characters of A.

Let A be a commutative algebra. A bilinear form (,) : A ⊗ A → C is called invariant if
(ab, c) = (a, bc) for all a, b, c ∈ A.

A finite-dimensional commutative algebra A which admits an invariant nondegenerate
symmetric bilinear form (,) : A ⊗ A → C is called a Frobenius algebra. It is easy to see that
distinct local summands of a Frobenius algebra are orthogonal.

The following properties of Frobenius algebras will be useful.

Lemma 4.4. A finite direct sum of Frobenius algebras is a Frobenius algebra.

Let A be a Frobenius algebra. Let I ⊂ A be a subspace. Denote by I⊥ ⊂ A the
orthogonal complement to I. Then dim I + dim I⊥ = dim A, and the subspace I is an ideal if
and only if I⊥ is an ideal.

11
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Let A0 be a local Frobenius algebra with maximal ideal m ⊂ A0. Then m⊥ is a one-
dimensional ideal. Let m⊥ ∈ m⊥ be an element such that (1,m⊥) = 1.

Lemma 4.5. Any nonzero ideal I ⊂ A0 contains m⊥.

For a subset I ⊂ A define its annihilator as Ann I = {a ∈ A, |aI = 0}. The annihilator
Ann I is an ideal.

Lemma 4.6. Let A be a Frobenius algebra and I ⊂ A an ideal. Then Ann I = I⊥. In
particular, dim I + dim Ann I = dim A.

For any ideal I ⊂ A, the regular action of A on itself induces an action of A/I on Ann I .

Lemma 4.7. The A/I -module Ann I is isomorphic to the coregular representation of A/I .
In particular, the image of A/I in End(Ann I ) is a maximal commutative subalgebra.

Let P1, . . . , Pm be polynomials in variables x1, . . . , xm. Denote by I the ideal in
C[x1, . . . , xm] generated by P1, . . . , Pm.

Lemma 4.8. If the algebra C[x1, . . . , xm]/I is nonzero and finite dimensional, then it is a
Frobenius algebra.

The proofs of lemmas 4.4–4.8 can be found in [MTV6].
Lemma 4.8 has the following generalization. Let CT (x1, . . . , xm) be the algebra of

rational functions in x1, . . . , xm, regular at points of a subset T ⊂ C
m. Denote by IT the ideal

in CT (x1, . . . , xm) generated by P1, . . . , Pm.

Lemma 4.9. Assume that the solution set to the system of equations

P1(x1, . . . , xm) = · · · = Pm(x1, . . . , xm) = 0

is finite and lies in T. Then the algebra CT (x1, . . . , xm)/IT is a Frobenius algebra.

4.4. Wronski map

Let X be a point of �λ. Define

WrX(u) = Wr(f1(u,X), . . . , fN(u,X)), (4.9)

where f1(u,X), . . . , fN(u,X) are given by (4.2). Define the Wronski map π : �λ → C
n by

X �→ a = (a1, . . . , an) if

WrX(u) = e
∑N

i=1 Kiu
∏

1�i<j�N

(Kj − Ki)

(
un +

n∑
s=1

(−1)sasu
n−s

)
.

For a ∈ C
n, let IO

λ,a be the ideal in Oλ generated by the elements Σs − as, s = 1, . . . , n,
where Σ1, . . . , Σn are defined by (4.3). The quotient algebra

Oλ,a = Oλ

/
IO
λ,a (4.10)

is the scheme-theoretic fiber of the Wronski map. We call it the algebra of functions on the
preimage π−1(a).

Lemma 4.10.

(i) The algebra Oλ,a is a finite-dimensional commutative associative unital algebra and
dimC Oλ,a does not depend on a.

(ii) The algebra Oλ,a is a Frobenius algebra.

12
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Proof. The Wronski map is a polynomial map of finite degree (see propositions 4.2 and 3.1
in [MTV5]). This implies part (i) of the lemma and the fact that Oλ,a is a direct sum of local
algebras. The dimension of Oλ,a is the degree of the Wronski map and the local summands
correspond to the points of the set π−1(a). The algebra Oλ,a is Frobenius by lemma 4.8. �

5. Intersection ΩΛ, λ, b and algebra OΛ, λ, b

5.1. Intersection ��,λ,b

For b ∈ C and a partition µ of n with at most N parts, denote by �µ(b) the variety of all
spaces of quasi-exponentials X ∈ �λ such that for every i = 1, . . . , N there exists a function
g(u) ∈ X with zero of order µi + N − i at b.

Let Λ = (λ(1), . . . ,λ(k)) be a sequence of partitions with at most N parts such that∑k
s=1 |λ(s)| = n. Denote ns = |λ(s)|. Let b = (b1, . . . , bk) be a sequence of distinct complex

numbers.
Consider the intersection

�Λ,λ,b =
k⋂

s=1

�λ(s) (bs). (5.1)

Given a space of quasi-exponentials X ⊂ �λ, denote by DX the monic scalar differential
operator of order N with kernel X. The operatorDX equals the operatorDO

λ , see (4.4), computed
at X.

Lemma 5.1. A space of quasi-exponentials X ⊂ �λ is a point of �Λ,λ,b if and only
if the singular points of the operator DX are at b1, . . . , bk and ∞ only, the singular
points at b1, . . . , bk are regular, and the exponents at bs, s = 1, . . . , k, are equal to
λ

(s)
N , λ

(s)
N−1 + 1, . . . , λ

(s)
1 + N − 1.

Lemma 5.2. Let b = (b1, . . . , bk), and n = (n1, . . . , nk) be as at the beginning of this section.
Let the numbers a = (a1, . . . , an) be related to b and n as in (2.7). Then �Λ,λ,b ⊂ π−1(a).
In particular, the set �Λ,λ,b is finite.

Let Qλ be the field of fractions of Oλ, and QΛ,λ,b ⊂ Qλ the subring of elements regular
at all points of �Λ,λ,b.

Consider the N×N matrices M1, . . . ,Mk with entries in Oλ,

(Ms)ij = 1(
λ

(s)
j + N − j

)
!

(( d

du

)λ
(s)
j +N−j

fi(u)

)∣∣∣∣
u=bs

.

The values of M1, . . . , Mk at any point of �Λ,b are matrices invertible over C. Therefore, the
inverse matrices M−1

1 , . . . ,M−1
k exist as matrices with entries in QΛ,λ,b.

Introduce the elements gijs ∈ QΛ,λ,b, i = 1, . . . , N, j = 0, . . . , d1, s = 1, . . . , k, by the
rule

d1∑
j=0

gijs(u − bs)
j =

N∑
m=1

(
M−1

s

)
im

fm(u). (5.2)

Clearly, g
i,λ

(s)
j +N−j,s

= δij for all i, j = 1, . . . , N , and s = 1, . . . , k.

For each s = 1, . . . , k, let J
Q,s
Λ,λ,b be the ideal in QΛ,λ,b generated by the elements

gijs, i = 1, . . . , N, j = 0, . . . , λ
(s)
i + N − i − 1, and JQ

Λ,λ,b = ∑k
s=1 J

Q,s
Λ,λ,b. Note that the

number of generators of the ideal JQ
Λ,λ,b equals n.

13
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The quotient algebra

OΛ,λ,b = QΛ,λ,b

/
JQ

Λ,λ,b (5.3)

is the scheme-theoretic intersection of varieties �λ(s) , s = 1, . . . , k. We call it the algebra of
functions on �Λ,λ,b.

Lemma 5.3. The algebra �Λ,λ,b is a Frobenius algebra.

Proof. The claim follows from lemma 4.9. �

It is known from Schubert calculus that

dimOΛ,λ,b = dim
(⊗k

s=1Lλ(s)

)
λ
, (5.4)

see [MTV8, lemma 3.6 and proposition 3.7].

5.2. Algebra O�,λ,b as a quotient of Oλ

Consider the differential operator

D̃O
λ = rdet

⎛
⎜⎜⎜⎝

f1(u) f ′
1(u) . . . f

(N)
1 (u)

f2(u) f ′
2(u) . . . f

(N)
2 (u)

. . . . . . . . . . . .

1 ∂ . . . ∂N

⎞
⎟⎟⎟⎠ . (5.5)

It is a differential operator in the variable u whose coefficients are polynomials in u with
coefficients in Oλ,

D̃O
λ =

N∑
i=0

Gi(u)∂N−i . (5.6)

Clearly, Gi(u) = 0 for i > n, and deg Gi � n, otherwise. We also have

G0(u) = Wr(f1(u), . . . , fN(u)),

Gi(u) = Wr(f1(u), . . . , fN(u))Fi(u), i = 1, . . . , N,

Introduce the elements Gijs ∈ Oλ, i = 0, . . . , N, j = 0, . . . , n − i, s = 1, . . . , k, by the
rule

Gi(u) =
n∑

j=0

Gijs(u − bs)
j . (5.7)

Define the indicial polynomial χO
s (α) at bs by the formula

χO
s (α) =

N∑
i=0

Gi,ns−i,s

N−i−1∏
j=0

(α − j).

It is a polynomial of degree N in the variable α with coefficients in Oλ.

Lemma 5.4. For a complex number r, the element χO
s (r) is invertible in QΛ,λ,b provided

r �= λ
(s)
j + N − j for all j = 1, . . . , N .

Proof. An element of QΛ,λ,b is invertible if and only if its value at any point of �Λ,b is
nonzero. Now the claim follows from lemmas 5.1 and 5.2. �
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For each s = 1, . . . , k, let I
Q,s
Λ,λ,b be the ideal in QΛ,λ,b generated by the elements

Gijs, i = 0, . . . , N, 0 � j < ns − i, and the coefficients of the polynomials

χO
s (α) −

k∏
r=1
r �=s

(bs − br)
nr

N∏
l=1

(
α − λ

(s)
l − N + l

)
, s = 1, . . . , k. (5.8)

Denote IQ
Λ,λ,b = ∑k

s=1 I
Q,s
Λ,λ,b.

Lemma 5.5 ([MTV6]). For any s = 1, . . . , k, the ideals I
Q,s
Λ,λ,b and J

Q,s
Λ,λ,b coincide.

Let IO
Λ,λ,b be the ideal in Oλ generated by the elements Gijs, i = 0, . . . , N, s =

1, . . . , k, 0 � j < ns − i, and the coefficients of polynomials (5.8).

Proposition 5.6. The algebra OΛ,λ,b is isomorphic to the quotient algebra Oλ

/
IO
Λ,λ,b.

Proof. By lemma 5.5, the ideals IQ
Λ,λ,b and JQ

Λ,λ,b coincide, so the algebra OΛ,λ,b is isomorphic
to the quotient algebra QΛ,λ,b

/
IQ
Λ,λ,b. By lemma 5.1, the algebraic set defined by the ideal

IO
Λ,λ,b equals �Λ,b. The set �Λ,b is finite by lemma 5.2. Therefore, the quotient algebras
QΛ,λ,b

/
IQ
Λ,λ,b and Oλ

/
IO
Λ,λ,b are isomorphic. �

5.3. Algebra O�,λ,b as a quotient of Oλ,a

Recall that Oλ,a = Oλ

/
IO
λ,a is the algebra of functions on π−1(a) (see (4.10)). For an element

F ∈ Oλ, we denote by F̄ the projection of F to the quotient algebra Oλ,a.
Define the indicial polynomial χ̄O

s (α) at bs by the formula

χ̄O
s (α) =

N∑
i=0

Ḡi,ns−i,s

N−i−1∏
j=0

(α − j).

Let ĪO
Λ,λ,b be the ideal inOλ,a generated by the elements Ḡijs , i = 1, . . . , N, s = 1, . . . , k, 0 �

j < ns − i, and the coefficients of the polynomials

χ̄O
s (α) −

k∏
r=1
r �=s

(bs − br)
nr

N∏
l=1

(
α − λ

(s)
l − N + l

)
, s = 1, . . . , k.

Proposition 5.7. The algebra OΛ,λ,b is isomorphic to the quotient algebra Oλ,a

/
ĪO
Λ,λ,b.

Proof. It is easy to see that the elements G0js, j = 0, . . . , ns − 1, s = 1, . . . , k, generate the
ideal IO

λ,a in Oλ. Moreover, the projection of the ideal IO
Λ,λ,b ⊂ Oλ to Oλ,a equals ĪO

Λ,λ,b.
Hence, the claim follows from proposition 5.6. �

Recall that the ideal Ann
(
ĪO
Λ,λ,b

) ⊂ Oλ,a is naturally an OΛ,λ,b-module.

Corollary 5.8. The OΛ,λ,b-module Ann
(
ĪO
Λ,λ,b

)
is isomorphic to the coregular representation

of OΛ,λ,b on the dual space (OΛ,λ,b)
∗.

Proof. The statement follows from lemmas 5.3 and 4.7. �
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6. Three isomorphisms

6.1. Auxiliary lemma

Let λ be a partition of n with at most N parts. Recall that given a space of quasi-exponentials
X ∈ �λ, we denote by DX the monic scalar differential operator of order N with kernel X.

Let M be a glN [t]-module M and v an eigenvector of the Bethe algebra B ⊂ U(glN [t])
acting on M. Then for any coefficient Bi(u) of the universal differential operator DB we have
Bi(u)v = hi(u)v, where hi(u) is a scalar series. We call the scalar differential operator

DB
v = ∂N +

N∑
i=1

hi(u)∂N−i (6.1)

the differential operator associated with v.
We consider C

n with the symmetric group Sn action defined by permutation of coordinates.

Lemma 6.1. There exist a Zariski open Sn-invariant subset � of C
n and a Zariski open subset

� of �λ with the following properties.

(i) For any (b1, . . . , bn) ∈ �, there exists a basis of
(⊗n

s=1V (bs)
)
λ

such that every basis
vector v is an eigenvector of the Bethe algebra and DB

v = DX for some X ∈ �. Moreover,
different basis vectors correspond to different points of �.

(ii) For any X ∈ �, if b1, . . . , bn are all roots of the Wronskian WrX, then (b1, . . . , bn) ∈ �,
and there exists a unique up to proportionality vector v ∈ (⊗n

s=1V (bs)
)
λ

such that v is
an eigenvector of the Bethe algebra with DB

v = DX.

Proof. The basis in part (i) is constructed by the Bethe ansatz method as in section 10 of
[MTV4]. The equality DB

v = DX is proved in [MTV1]. The existence of an eigenvector v in
part (ii) for generic X ⊂ �λ̄ is proved as in section 10 of [MTV4]. �

Corollary 6.2. The degree of the Wronski map equals dim(V ⊗n)λ.

6.2. Isomorphism of algebras Oλ and Bλ

Consider the B-module (VS)λ. Denote (VS)λ by Mλ and the Bethe algebra associated with
(VS)λ by Bλ.

Consider the map

τλ : Oλ → Bλ, Fij �→ B̂ij ,

where the elements Fij ∈ Oλ are defined by (4.6) and B̂ij ∈ Bλ are the images of the elements
Bij ∈ B, defined by (3.2).

Theorem 6.3. The map τλ is a well-defined isomorphism of algebras.

Proof. Let a polynomial R(Fij ) in generators Fij be equal to zero in Oλ. Let us prove that the
corresponding polynomial R(B̂ij ) is equal to zero in the Bλ. Indeed, R(B̂ij ) is a polynomial
in z1, . . . , zn with values in End

(
(V ⊗n)λ

)
. Let � be the set, introduced in lemma 6.1, and

(b1, . . . , bn) ∈ �. Then by part (i) of lemma 6.1, the value of the polynomial R(B̂ij ) at
z1 = b1, . . . , zn = bn equals zero. Hence, the polynomial R(B̂ij ) equals zero identically and
the map τλ is well defined.

Let a polynomial R(Fij ) in generators Fij be a nonzero element of Oλ. Then the value
of R(Fij ) at a generic point X ∈ �λ̄(∞) is not equal to zero. Then by part (ii) of lemma 6.1,
the polynomial R(B̂ij ) is not identically equal to zero. Therefore, the map τλ is injective.
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Since the elements B̂ij generate the algebra Bλ, the map τλ is surjective. �

The algebra C[z1, . . . , zn]S is embedded into the algebra Bλ as the subalgebra of
operators of multiplication by symmetric polynomials (see lemmas 2.10 and formula (3.4)).
The algebra C[z1, . . . , zn]S is embedded into the algebra Oλ, the elementary symmetric
polynomials σ1(z), . . . , σn(z) being mapped to the elements Σ1, . . . , Σn, defined by (4.3).
These embeddings give the algebras Bλ and Oλ the structure of C[z1, . . . , zn]S-modules.

Lemma 6.4. The map τλ : Oλ → Bλ is an isomorphism of C[z1, . . . , zn]S-modules, that is,
τλ(Σi) = σi(z) for all i = 1, . . . , n.

Proof. The claim follows from the fact that

F1(u) = −Wr′(f1(u), . . . , fN(u))

Wr(f1(u), . . . , fN(u))
(6.2)

where ′ denotes the derivative with respect to u, and from formula (3.3). �

Lemma 6.5. For any homogeneous element F ∈ Oλ, the degrees of homogeneous components
of τλ(F ) ∈ Bλ do not exceed deg F .

Proof. It suffices to prove the claim for the generators fij ∈ Oλ. In that case, the statement
follows from formula (4.8) and lemma 3.2 by induction with respect to j , starting from j = 1.

�

Given a vector v ∈ Mλ, consider a linear map

µv : Oλ → Mλ, F �→ τλ(F )v.

Lemma 6.6. If v ∈ Mλ is nonzero, then the map µv is injective.

Proof. The algebra Oλ is a free polynomial algebra containing the subalgebra C[z1, . . . , zn]S .
By part (i) of lemma 4.10, the quotient algebra Oλ/C[z1, . . . , zn]S is finite dimensional. The
kernel of µv is an ideal in Bλ which has zero intersection with C[z1, . . . , zn]S and, therefore,
is the zero ideal. �

The graded character of VS
λ is given by formula (2.5). Fix a nonzero vector v ∈ VS

λ of
degree 0. Such a vector is unique up to multiplication by a nonzero number. Then the map
µv will be denoted by µλ.

Theorem 6.7. The map µλ : Oλ → Mλ is a vector isomorphism. This isomorphism preserves
the degree of elements. The maps τλ and µλ intertwine the action of multiplication operators
on Oλ and the action of the Bethe algebra Bλ on Mλ, that is, for any F,G ∈ Oλ, we have

µλ(FG) = τλ(F )µλ(G). (6.3)

In other words, the maps τλ and µλ give an isomorphism of the regular representation of Oλ

and the Bλ-module Mλ.

Proof. The map µλ is injective by lemma 6.6. The map µλ does not increase the degree
by lemma 6.5. The graded characters of Oλ and Mλ are the same by lemmas 4.1 and 2.13.
Hence, the map µλ is surjective. Formula (6.3) follows from theorem 6.3. �
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6.3. Isomorphism of algebras Oλ,a and Bλ,a

Let a = (a1, . . . , aN) be a sequence of complex numbers. Let distinct complex numbers
b1, . . . , bk and integers n1, . . . , nk be given by (2.7).

Let IB
λ,a ⊂ Bλ be the ideal generated by the elements σi(z) − ai, i = 1, . . . , n. Consider

the subspace IM
λ,a = IB

λ,aMλ, where IV
a is given by (2.6). Recall that the ideal IO

λ,a is defined
in section 4.4.

Lemma 6.8. We have

τλ

(
IO
λ,a

) = IB
λ,a, µλ

(
IO
λ,a

) = IM
λ,a, Bλ,a = Bλ

/
IB
λ,a, Mλ,a = Mλ

/
IM
λ,a.

Proof. The lemma follows from theorems 6.3, 6.7 and lemmas 6.4, 2.14. �

By lemma 6.8, the maps τλ and µλ induce the maps

τλ,a : Oλ,a → Bλ,a, µλ,a : Oλ,a → Mλ,a. (6.4)

Theorem 6.9. The map τλ,a is an isomorphism of algebras. The map µλ,a is an isomorphism
of vector spaces. The maps τλ,a and µλ,a intertwine the action of multiplication operators on
Oλ,a and the action of the Bethe algebra Bλ,a on Mλ,a, that is, for any F,G ∈ Oλ,a, we have

µλ,a(FG) = τλ,a(F )µλ,a(G).

In other words, the maps τλ,a and µλ,a give an isomorphism of the regular representation of
Oλ,a and the Bλ,a-module Mλ,a.

Proof. The theorem follows from theorems 6.3, 6.7 and lemma 6.8. �

Remark. By lemma 4.10, the algebra Oλ,a is Frobenius. Therefore, its regular and coregular
representations are isomorphic.

6.4. Isomorphism of algebras O�,λ,b and B�,λ,b

Let Λ = (λ(1), . . . ,λ(k)) be a sequence of partitions with at most N parts such that |λ(s)| = ns

for all s = 1, . . . , k.
Consider the B-module

(⊗k
s=1Lλ(s) (bs)

)
λ

. Denote
(⊗k

s=1Lλ(s) (bs)
)
λ

by MΛ,λ,b and the
Bethe algebra associated with

(⊗k
s=1Lλ(s) (bs)

)
λ

by BΛ,λ,b.
We begin with an observation. Let A be an associative unital algebra, and let L,M

be A-modules such that L is isomorphic to a subquotient of M. Denote by AL and AM the
images of A in End(L) and End(M), respectively, and by πL : A → AL, πM : A → AM

the corresponding epimorphisms. Then, there exists a unique epimorphism πML : AM → AL

such that πL = πML ◦ πM .
Applying this observation to the Bethe algebra B and B-modules Mλ,Mλ,a,MΛ,λ,b, we

get a chain of epimorphisms B → Bλ → Bλ,a → BΛ,λ,b. In particular, each module over a
smaller Bethe algebra is naturally a module over a bigger Bethe algebra.

For any element F ∈ Bλ, we denote by F̄ the projection of F to the algebra Bλ,a.
Let C1(u), . . . , CN(u) be the polynomials with coefficients in Bλ, defined in lemma 3.5.

Introduce the elements Cijs ∈ Bλ for i = 1, . . . , N, j = 0, . . . , n, s = 1, . . . , k, by the rule
n∑

j=0

Cijs(u − bs)
j = Ci(u).

18



J. Phys. A: Math. Theor. 41 (2008) 194017 E Mukhin et al

In addition, let C̄0js, j = 0, . . . , n, s = 1, . . . , k, be the numbers such that

n∑
j=0

C̄0js(u − bs)
j =

k∏
r=1

(u − br)
nr .

Define the indicial polynomial χ̄B
s (α) at bs by the formula

χ̄B
s (α) =

N∑
i=0

C̄i,ns−i,s

N−i−1∏
j=0

(α − j).

It is a polynomial of degree N in the variable α with coefficients in Bλ,a.
Let IB

Λ,λ,b be the ideal in Bλ,a generated by the elements C̄ijs , i = 1, . . . , N, s =
1, . . . , k, 0 � j < ns − i, and the coefficients of the polynomials

χ̄B
s (α) −

k∏
r=1
r �=s

(bs − br)
nr

N∏
l=1

(
α − λ

(s)
l − N + l

)
, s = 1, . . . , k. (6.5)

Lemma 6.10. The ideal IB
Λ,λ,b belongs to the kernel of the projection Bλ,a → BΛ,λ,b.

Proof. The statement follows from lemma 3.4 and corollary 3.7. �

Hence, the projection Bλ,a → BΛ,λ,b descends to an epimorphism

πΛ,λ,b : Bλ,a

/
IB
Λ,λ,b → BΛ,λ,b, (6.6)

which makes MΛ,λ,b into a Bλ,a

/
IB
Λ,λ,b-module.

Denote ker
(
IB
Λ,λ,b

) = {
v ∈ Mλ,a

∣∣IB
Λ,λ,bv = 0

}
. Clearly, ker

(
IB
Λ,λ,b

)
is a Bλ,a-

submodule of Mλ,a.

Proposition 6.11. The Bλ,a

/
IB
Λ,λ,b-modules ker

(
IB
Λ,λ,b

)
and MΛ,λ,b are isomorphic.

The proposition is proved in section 6.5.
Let ĪO

Λ,λ,b ⊂ Oλ,a be the ideal defined in section 5.3. Clearly, the map τλ,a : Oλ,a → Bλ,a

sends ĪO
Λ,λ,b to IB

Λ,λ,b. By lemma 5.7, the maps τλ,a and πΛ,λ,b induce the homomorphism

τΛ,λ,b : OΛ,λ,b → BΛ,λ,b.

By theorem 6.9, the map µλ,a : Oλ,a → Mλ,a sends Ann
(
ĪO
Λ,λ,b

) ⊂ Oλ,a to ker
(
IB
Λ,λ,b

)
.

The vector spaces Ann
(
ĪO
Λ,λ,b

)
and (OΛ,λ,b)

∗ are isomorphic by corollary 5.8. Hence,
proposition 6.11 yields that the map µλ,a induces a bijective linear map

µΛ,λ,b : (OΛ,λ,b)
∗ → MΛ,λ,b.

For any F ∈ OΛ,λ,b, denote by F ∗ ∈ End((OΛ,λ,b)
∗) the operator, dual to the operator of

multiplication by F on OΛ,λ,b.

Theorem 6.12. The map τΛ,λ,b is an isomorphism of algebras. The maps τΛ,λ,b and µΛ,λ,b

intertwine the action of the operators on (OΛ,λ,b)
∗, dual to the multiplication operators on

OΛ,λ,b, and the action of the Bethe algebra BΛ,λ,b on MΛ,λ,b, that is, for any F ∈ Oλ,a and
G ∈ (OΛ,λ,b), we have

µΛ,λ,b(F
∗G) = τΛ,λ,b(F )µΛ,λ,b(G).

In other words, the maps τΛ,λ,b and µΛ,λ,b give an isomorphism of the coregular representation
of OΛ,λ,b on the dual space (OΛ,λ,b)

∗ and the BΛ,λ,b-module MΛ,λ,b.
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Proof. By lemma 5.7, the isomorphism τλ,a : Oλ,a → Bλ,a induces the isomorphism

τΛ,λ,b : OΛ,λ,b → Bλ,a

/
IB
Λ,λ,b.

so the maps τΛ,λ,b and µλ,a give an isomorphism of the OΛ,λ,b-module Ann
(
ĪO
Λ,λ,b

)
and the

Bλ,a

/
IB
Λ,λ,b-module ker

(
IB
Λ,λ,b

)
(see theorem 6.9).

By lemma 4.7, the OΛ,λ,b-module Ann
(
ĪO
Λ,λ,b

)
is isomorphic to the coregular

representation of OΛ,λ,b on the dual space (OΛ,λ,b)
∗. In particular, it is faithful. Therefore,

the Bλ,a

/
IB
Λ,λ,b-module ker

(
IB
Λ,λ,b

)
is faithful. By proposition 6.11, the Bλ,a

/
IB
Λ,λ,b-

module Mλ,λ,b, isomorphic to ker
(
IB
Λ,λ,b

)
, is faithful too, which implies that the map

πΛ,λ,b : Bλ,a

/
IB
Λ,λ,b → BΛ,λ,b is an isomorphism of algebras. The theorem follows. �

Remark. By lemma 5.3, the algebra OΛ,λ,b is Frobenius. Therefore, its coregular and regular
representations are isomorphic.

6.5. Proof of proposition 6.11

We begin the proof with an elementary auxiliary lemma. Let M be a finite-dimensional vector
space, U ⊂ M be a subspace and E ∈ End(M).

Lemma 6.13. Let EM ⊂ U , and the restriction of E to U is invertible in End(U). Then
EU = U and M = U ⊕ ker E.

Let Wm be a Weyl module, see section 2.3, and µ be a partition with at most N parts
such that |µ| = m. Recall that Wm is a graded vector space, the grading of Wm is defined in
lemma 2.2.

Given a homogeneous vector w ∈ (Wm)
sing
µ , let Lw(b) be the glN [t]-submodule of Wm(b)

generated by the vector v. The space Lw(b) is graded. Denote by L=
w(b) and L>

w(b) the
subspaces of Lw(b) spanned by homogeneous vectors of degree deg w and of degree strictly
greater than deg w, respectively. The subspaceL=

w(b) is a glN -submodule ofLw(b) isomorphic
to the irreducible glN -module Lµ. The subspace L>

w(b) is a glN [t]-submodule of Lw(b), and
the glN [t]-module Lw(b)/L>

w(b) is isomorphic to the evaluation module Lµ(b). If v has the
largest degree possible for vectors in (Wm)

sing
µ , then L>

w(b), considered as a glN -module, does
not contain Lµ.

For any s = 1, . . . , k, pick up a homogeneous vector ws ∈ (Wns
)

sing
λ(s) of the largest possible

degree. Let Lw(b) be the glN [t]-submodule of ⊗k
s=1Wns

(bs) generated by the vector ⊗k
s=1ws .

Denote by L=
w(b) and L>

w(b) the following subspaces of Lw(b):

L=
w(b) = ⊗k

s=1L=
ws

(bs),

L>
w(b) =

k∑
s=1

Lw1(b1) ⊗ · · · ⊗ L>
ws

(bs) ⊗ · · · ⊗ Lwk
(bk).

The subspace L>
w(b) is a glN [t]-submodule of Lw(b), and the glN [t]-module Lw(b)/L>

w(b) is
isomorphic to the tensor product of evaluation modules ⊗k

s=1Lλ(s) (bs).
The space ⊗k

s=1Wns
has the second glN [t]-module structure, denoted gr

(⊗k
s=1Wns

(bs)
)
,

which was introduced at the end of section 2.3. The subspace Lw(b) is a glN [t]-
submodule of gr

(⊗k
s=1Wns

(bs)
)
, isomorphic to a direct sum of irreducible glN [t]-modules

of the form ⊗k
s=1Lµ(s) (bs), where |µ(s)| = ns, s = 1, . . . , k, see lemmas 2.5 and 2.6, and

(µ(1), . . . ,µ(k)) �= (λ(1), . . . ,λ(k)) for any term of the sum.
The subspace Mλ,a = (⊗k

s=1Wns
(bs)

)
λ

is invariant under the action of the Bethe
algebra B ⊂ U(glN [t]). This makes it a B-module, which we call the standard B-module
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structure on Mλ,a. The B-module Mλ,a contains the submodules Mw
Λ,λ,b = (Lw(b))λ

and Mw,>
Λ,λ,b = (

L>
w(b)

)
λ

, and the subspace Mw,=
Λ,λ,b = (

L=
w(b)

)
λ

. As vector spaces,
Mw

Λ,λ,b = Mw,=
Λ,λ,b ⊕ Mw,>

Λ,λ,b. The B-modules Mw
Λ,λ,b

/
Mw,>

Λ,λ,b and MΛ,λ,b are isomorphic.
The space Mλ,a has another B-module structure, inherited from the glN [t]-module

structure of gr
(⊗k

s=1Wns
(bs)

)
. We denote the new structure grMλ,a. The subspaces

Mw
Λ,λ,b,M

w,=
Λ,λ,b,M

w,>
Λ,λ,b are B-submodules of the B-module grMλ,a. The submodule

Mw,=
Λ,λ,b ⊂ grMλ,a is isomorphic to the B-module MΛ,λ,b, and the submodule Mw,>

Λ,λ,b ⊂
grMλ,a is isomorphic to a direct sum of B-modules of the form MM ,λ,b, where M =
(µ(1), . . . ,µ(k)), |µ(s)| = ns, s = 1, . . . , k, and M �= Λ for any term of the sum.

In the picture described above, we can regard all B-modules involved as Bλ,a-modules.
For any F ∈ Bλ,a, we denote by grF ∈ End(Mλ,a) the linear operator corresponding to

the action of F on grMλ,a. The map F �→ gr F is an algebra homomorphism.
Let complex numbers c1, . . . , ck, α1, . . . , αk be such that

k∑
s=1

cs

(
N∏

i=1

(
αs − µ

(s)
i − N + i

) −
N∏

i=1

(
αs − λ

(s)
i − N + i

)) �= 0,

for any sequence of partitions (µ(1), . . . ,µ(k)) �= (λ(1), . . . ,λ(k)). Introduce

E =
k∑

s=1

cs

⎛
⎜⎜⎝χ̄B

s (αs) −
k∏

r=1
r �=s

(bs − br)
nr

N∏
i=1

(αs − λ
(s)
i − N + i)

⎞
⎟⎟⎠ ∈ IB

Λ,λ,b,

where χ̄B
s is the indicial polynomial (6.5). With respect to the standard B-module structure on

Mλ,a, we have EMw
Λ,λ,b ⊂ Mw,>

Λ,λ,b.

Lemma 6.14. The restriction of E to Mw,>
Λ,λ,b is invertible in End

(
Mw,>

Λ,λ,b

)
.

Proof. Lemma 6.10 implies that the projection of E to BΛ,λ,b equals zero, and the projection
of E to BM,λ,b with M �= Λ is invertible. This means that the restriction of the operator grE
to Mw,>

Λ,λ,b is invertible in End
(
Mw,>

Λ,λ,b

)
. Therefore, the restriction of E to Mw,>

Λ,λ,b is invertible
in End

(
Mw,>

Λ,λ,b

)
. �

Denote kerwΛ,λ,b E = ker E ∩ Mw
Λ,λ,b. By lemma 6.13, the canonical projection

Mw
Λ,λ,b → Mw

Λ,λ,b

/
Mw,>

Λ,λ,b � MΛ,λ,b

induces an isomorphism kerwΛ,λ,b E → MΛ,λ,b of vector spaces. Since the algebra Bλ,a is
commutative, the subspace kerwΛ,λ,b E is a B-submodule and the map kerwΛ,λ,b E → MΛ,λ,b is
an isomorphism of Bλ,a-modules.

Lemma 6.10 implies that elements of the ideal IB
Λ,λ,b act on MΛ,λ,b by zero. Hence, they

act by zero on kerwΛ,λ,b E, that is, kerwΛ,λ,b E ⊂ ker
(
IB
Λ,λ,b

)
. On the other hand, we have

dim ker
(
IB
Λ,λ,b

) = dim Ann
(
ĪO
Λ,λ,b

) = dimOΛ,λ,b = dimMΛ,λ,b = dim kerwΛ,λ,b E,

see theorem 6.9, corollary 5.8 and formula (5.4), which yields kerwΛ,λ,b E = ker
(
IB
Λ,λ,b

)
.

Proposition 6.11 is proved.

Remark. Note that formula (5.4) is the key ingredient of the proof.
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7. Applications

7.1. Action of the Bethe algebra in a tensor product of evaluation modules

In this section, we summarize the obtained results in a way independent from the main part of
the paper. For convenience, we recall some definitions.

Let K = (K1, . . . , KN) be a sequence of distinct complex numbers. The Bethe algebra B
is a commutative subalgebra of U(glN [t]), defined in section 3.1 with the help of this sequence.
It is generated by the elements Bij , i = 1, . . . , N, j ∈ Z�i , given by formula (3.2). The Bethe
algebra depends on the choice of K. In the remainder of the paper we will denote this algebra
by BK .

If M is a BK-module and ξ : BK → C a homomorphism, then the eigenspace
of the BK-action on M corresponding to ξ is defined as

⋂
F∈BK

ker(F |M − ξ(F )) and
the generalized eigenspace of the BK-action on M corresponding to ξ is defined as⋂

F∈BK

( ⋃∞
m=1 ker(F |M − ξ(F ))m

)
.

For a partition λ with at most N parts, let Lλ be the irreducible finite-dimensional glN -
module of highest weight λ.

Let λ(1), . . . ,λ(k) be partitions with at most N parts, b1, . . . , bk distinct complex numbers.
We are interested in the action of the Bethe algebra BK on the tensor product ⊗k

s=1Lλ(s) (bs)

of evaluation glN [t]-modules.
Since BK commutes with the subalgebra U(h) ⊂ U(glN [t]), the action of BK preserves

the weight subspaces of ⊗k
s=1Lλ(s) (bs).

Denote Λ = (λ(1), . . . ,λ(k)). Given a partition λ with at most N parts such that
|λ| = ∑k

s=1 |λ(s)|, let �Λ,λ,b,K be the set of all monic differential operators of order N,

D = ∂N +
N∑

i=1

hD
i (u)∂N−i , (7.1)

where ∂ = d/du, with the following properties:

(a) The singular points of D are at b1, . . . , bk and ∞ only.
(b) The exponents of D at bs, s = 1, . . . , k, are equal to λ

(s)
N , λ

(s)
N−1 + 1, . . . , λ

(s)
1 + N − 1.

(c) The kernel of D is generated by quasi-exponentials of the form

gi(u) = eKiu(uλi + gi1u
λi−1 + · · · + giλi

), i = 1, . . . , N,

where gij are suitable complex numbers.

A differential operator D belongs to the set �Λ,λ,b,K if and only if the kernel of D is a
point of the intersection �Λ,λ,b (see lemma 5.1).

Denote ns = |λ(s)|, s = 1, . . . , k and n = ∑k
s=1 ns .

Theorem 7.1. The action of the Bethe algebra BK on ⊗k
s=1Lλ(s) (bs) has the following

properties:

(i) For every i = 1, . . . , N , the action of the series Bi(u) is given by the power series
expansion in u−1 of a rational function of the form Ai(u)

∏k
s=1(u − bs)

−ns , where Ai(u)

is a polynomial of degree n with coefficients in End
(⊗k

s=1Lλ(s)

)
.

(ii) The image of BK in End
(⊗k

s=1Lλ(s)

)
is a maximal commutative subalgebra of dimension

dim ⊗k
s=1Lλ(s) .

(iii) Each eigenspace of the action of BK is one-dimensional.
(iv) Each generalized eigenspace of the action of BK is generated over BK by one vector.

22



J. Phys. A: Math. Theor. 41 (2008) 194017 E Mukhin et al

(v) The eigenspaces of the action of BK on
(⊗k

s=1Lλ(s) (bs)
)
λ

are in a one-to-one
correspondence with differential operators from �Λ,λ,b,K . Moreover, if D is the
differential operator, corresponding to an eigenspace, then the coefficients of the series
hD

i (u) are the eigenvalues of the action of the respective coefficients of the series Bi(u).
(vi) The eigenspaces of the action of BK on

(⊗k
s=1Lλ(s) (bs)

)
λ

are in a one-to-one
correspondence with points of the intersection �Λ,λ,b, given by (5.1).

Proof. The first property follows from corollary 3.7. The other properties follow from
theorem 6.12, lemma 5.1 and standard facts about the coregular representations of Frobenius
algebras given in section 4.3. �

Corollary 7.2. The following three statements are equivalent:

(i) The action of the Bethe algebra BK on
(⊗k

s=1Lλ(s) (bs)
)
λ

is diagonalizable.
(ii) The set �Λ,λ,b,K consists of dim

(⊗k
s=1Lλ(s)

)
λ

distinct points.
(iii) The set �Λ,λ,b consists of dim

(⊗k
s=1Lλ(s)

)
λ

distinct points.

The intersection �Λ,λ,b is transversal if the scheme-theoretic intersection OΛ,λ,b is a
direct sum of one-dimensional algebras.

Corollary 7.3. The action of the Bethe algebra BK on
(⊗k

s=1Lλ(s) (bs)
)
λ

is diagonalizable, if
and only the �Λ,λ,b is transversal.

Proof. The algebra OΛ,λ,b is a direct sums of local algebras, each local summand
corresponding to a point of the set �Λ,λ,b. Therefore, the intersection �Λ,λ,b is transversal if
and only if the dimension of OΛ,λ,b equals the cardinality of �Λ,λ,b. Corollary 7.2 completes
the proof. �

Corollary 7.4. Let K1, . . . , KN be distinct real numbers. Let b1, . . . , bk be distinct real
numbers. Then

(i) The set �Λ,λ,b,K consists of dim
(⊗k

s=1Lλ(s)

)
λ

distinct points.
(ii) The intersection �Λ,λ,b consists of dim

(⊗k
s=1Lλ(s)

)
λ

distinct points and is transversal.

Proof. If K1, . . . , KN are distinct real numbers and b1, . . . , bk are distinct real numbers, then
the action of the Bethe algebra BK on

(⊗k
s=1Lλ(s) (bs)

)
λ

is diagonalizable, see [MTV1] (cf
[MTV2]). �

7.2. Action of the Bethe algebra in Weyl modules

Results similar to theorem 7.1 and corollary 7.2 hold for the action of the Bethe algebra BK

on the glN [t]-module ⊗k
s=1Wns

(bs), the Weyl module associated with n = (n1, . . . , nk) and
b = (b1, . . . , bk), defined in section 2.3. The action of BK preserves the weight subspaces of
⊗k

s=1Wns
(bs).

Recall that V denotes the irreducible glN -module of highest weight (1, 0, . . . , 0), which
is the vector representation of glN .

Denote by �n,b,K the set of all monic differential operators D of order N with the
following properties.

(a) The kernel of D is generated by quasi-exponentials of the form

gi(u) = eKiu(uλi + gi1u
λi−1 + · · · + giλi

), i = 1, . . . , N,

where λ1 + · · · + λN = n and gij are suitable complex numbers.
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(b) The first coefficient hD
1 (u) of D, see (7.1), equals

∑N
i=1 Ki +

∑k
s=1 ns(bs − u)−1.

If D ∈ �n,b,K , then D is a differential operator with singular points at b1, . . . , bk and ∞
only.

Denote by �n,b,K the set of all N-dimensional spaces of quasi-exponentials with a basis
of the form

gi(u) = eKiu(uλi + gi1u
λi−1 + · · · + giλi

), i = 1, . . . , N,

and such that

Wr(g1(u), . . . , gN(u)) = e
∑N

i=1 Kiu
∏

1�i<j�N

(Kj − Ki)

k∏
s=1

(u − bs)
ns .

A differential operator D belongs to the set �n,b,K if and only if the kernel of D belongs to
the set �n,b,K .

Theorem 7.5. The action of the Bethe algebra BK on ⊗k
s=1Wns

(bs) has the following
properties.

(i) For every i = 1, . . . , N , the action of the series Bi(u) is given by the power series
expansion in u−1 of a rational function of the form Ai(u)

∏k
s=1(u − bs)

−ns , where Ai(u)

is a polynomial of degree n with coefficients in End
(⊗k

s=1Wns

)
.

(ii) The image of BK in End
(⊗k

s=1Wns

)
is a maximal commutative subalgebra of dimension

dim V ⊗n.
(iii) Each eigenspace of the action of BK is one-dimensional.
(iv) Each generalized eigenspace of the action of BK is generated over BK by one vector.
(v) The eigenspaces of the action of BK on ⊗k

s=1Wns
(bs) are in a one-to-one correspondence

with differential operators from �n,b,K . Moreover, if D is the differential operator,
corresponding to an eigenspace, then the coefficients of the series hD

i (u) are the
eigenvalues of the action of the respective coefficients of the series Bi(u).

(vi) The eigenspaces of the action of BK on ⊗k
s=1Wns

(bs) are in a one-to-one correspondence
with spaces of polynomials from Wr−1

n,b.

Proof. The first property follows from lemmas 2.14 and 3.5. The other properties follow from
theorem 6.9, formulae (4.4) and (6.2), and standard facts about the regular representations of
Frobenius algebras given in section 4.3. �

Corollary 7.6. The following three statements are equivalent.

(i) The action of the Bethe algebra BK on ⊗k
s=1Wns

(bs) is diagonalizable.
(ii) The set �n,b,K consists of dim V ⊗n distinct points.

(iii) The set �n,b,K consists of dim V ⊗n distinct points.

8. Completeness of Bethe ansatz

8.1. Generic points of �̄λ

Let �̄λ be the affine (n + N)-dimensional space with coordinates gij , i = 1, . . . , N, j =
1, . . . , λi and k1, . . . , kN . We identify points Y ∈ �̄λ with N-dimensional complex vector
spaces generated by quasi-exponentials

gi(u, Y ) = eki (Y )iu(uλi + gi1(Y )uλi−1 + · · · + giλi
(Y )), i = 1, . . . , N. (8.1)
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Let Y ∈ �̄λ be a point with distinct coordinates k1(Y ), . . . , kN(Y ). Denote by
BY ⊂ U(glN [t]) the Bethe algebra constructed in section 3.1 with the help of the sequence
K = (K1, . . . , KN) where Ki = ki(Y ) for all i.

For Y ∈ �̄λ, introduce the polynomials {y0(u), y1(u), . . . , yN−1(u)}, by the formula

ya(u) e
∑N

i=a+1 ki (Y )u
∏

a<i<j�N

(ki(Y ) − kj (Y )) = Wr(ga+1(u, Y ), . . . , gN(u, Y )),

for a = 0, . . . , N . Set

la =
N∑

b=a+1

λb, a = 0, . . . , N. (8.2)

Clearly, l0 = |λ| and lN = 0.
For each a = 0, . . . , N − 1, the polynomial ya(u) is a monic polynomial of degree la .

Denote t
(a)
1 , . . . , t

(a)
la

the roots of the polynomial ya(u), and put

tY = (
t
(0)
1 , . . . , t

(0)
l0

, . . . , t
(N−1)
1 , . . . , t

(N−1)
lN−1

)
. (8.3)

We say that tY are the root coordinates of Y.
We say that Y ∈ �̄λ is generic if all roots of the polynomials y0(u), y1(u), . . . , yN−1(u)

are simple and for each a = 1, . . . , N − 1, the polynomials ya−1(u) and ya(u) do not have
common roots.

If Y is generic, then the root coordinates tY satisfy the Bethe ansatz equations [MV1] (cf
[MTV4]),

la−1∑
j ′=1

1

t
(a)
j − t

(a−1)
j ′

−
la∑

j ′=1
j ′� =j

2

t
(a)
j − t

(a)
j ′

+
la+1∑
j ′=1

1

t
(a)
j − t

(a+1)
j ′

= Ka+1 − Ka.

Here the equations are labeled by a = 1, . . . , N − 1, j = 1, . . . , la .
Conversely, if t = (

t
(0)
1 , . . . , t

(0)
l0

, . . . , t
(N−1)
1 , . . . , t

(N−1)
lN−1

)
satisfy the Bethe ansatz

equations, then there exists a unique Y ∈ �̄λ such that Y is generic and t are its root
coordinates. This Y is determined by the following construction, see [MV1] (cf [MTV4]). Set

χa(u, t) = Ka +
la−1∑
j=1

1

u − t
(a−1)
j

−
la∑

i=1

1

u − t
(a)
j

, a = 1, . . . , N.

Then the monic differential operator DY with kernel Y is given by the formula

DY = (∂ − χ1(u, t)) . . . (∂ − χN(u, t)).

Clearly, the operator DY determines Y.

Lemma 8.1. Generic points form a Zariski open subset of �̄λ.

The lemma follows from theorem 10.5.1 in [MTV4].

8.2. Universal weight function

Let λ be a partition with at most N parts. Let l0, . . . , lN be the numbers defined in (8.2).
Denote n = l0, l = l1 + · · · + lN−1 and l = (l1, . . . , lN−1).

Consider the weight subspace (V ⊗n)λ of the nth tensor power of the vector representation
of glN and the space C

l+n with coordinates t = (
t
(0)
1 , . . . , t

(0)
l0

, . . . , t
(N−1)
1 , . . . , t

(N−1)
lN−1

)
.
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In this section we remind the construction of a rational map ω : C
l+n → (V ⊗n)λ, called

the universal weight function (see [SV]).
A basis of V ⊗n is formed by the vectors

eJ v = ej1,1v+ ⊗ · · · ⊗ ejn,1v+,

where J = (j1, . . . , jn) and 1 � js � N for s = 1, . . . , N . A basis of (V ⊗n)λ is formed by
the vectors eJ v such that #{s|js > i} = li for every i = 1, . . . , N − 1. Such a J will be called
l-admissible.

The universal weight function has the form

ω(t) =
∑

J

ωJ (t)eJ v,

where the sum is over the set of all l-admissible J , and the function ωJ (t) is defined below.
For an admissible J , define S(J ) = {s|js > 1}, and for i = 1, . . . , N − 1, define

Si(J ) = {s|1 � s � n, 1 � i < js}.
Then |Si(J )| = li .

Let B(J ) be the set of sequences β = (β1, . . . , βN−1) of bijections βi : Si(J ) →
{1, . . . , li}, i = 1, . . . , N − 1. Then |B(J )| = ∏N−1

a=1 la!.
For s ∈ S(J ) and β ∈ B(J ), introduce the rational function

ωs,β(t) = 1

t
(1)

β1(s)
− t

(0)
s

j1−1∏
i=2

1

t
(i)

βi (s)
− t

(i−1)

βi−1(s)

and define

ωJ (t) =
∑

β∈B(J )

∏
s∈S(J )

ωs,β.

Example 8.2. Let n = 2 and l = (1, 1, 0, . . . , 0). Then

ω(t) = 1(
t
(2)
1 − t

(1)
1

)(
t
(1)
1 − t

(0)
1

)e3,1v+ ⊗ v+ +
1(

t
(2)
1 − t

(1)
1

)(
t
(1)
1 − t

(0)
2

)v+ ⊗ e3,1v+.

Theorem 8.2. Let Y ∈ �̄λ be a generic point with root coordinates tY . Consider the value
ω(tY ) of the universal weight function ω : C

l+n → (V ⊗n)λ at tY . Consider V ⊗n as the glN [t]-
module ⊗n

s=1V
(
t (0)
s

)
. Consider the Bethe algebra BY ⊂ U(glN [t]). Then the vector ω(tY )

is an eigenvector of the Bethe algebra BY , acting on ⊗n
s=1V

(
t (0)
s

)
. Moreover, DBY

ω(tY ) = DY ,

where DBY

ω(tY ) and DY are the differential operators associated with the eigenvector ω(tY ) and
the point Y ∈ �̄λ, respectively.

The theorem is proved in [MTV1].

8.3. Epimorphism Fλ

Let λ(1), . . . ,λ(k),λ be partitions with at most N parts such that |λ| = ∑k
s=1 |λ(s)|, and

b1, . . . , bk distinct complex numbers. Denote n = |λ| and ns = |λ(s)|, s = 1, . . . , k.
For s = 1, . . . , k, let Fs : V ⊗ns → Lλ(s) be an epimorphism of glN -modules. Then

F1 ⊗ · · · ⊗ Fk : ⊗k
s=1V (bs)

⊗ns → ⊗k
s=1Lλ(s) (bs) (8.4)

is an epimorphism of glN [t]-module, which induces an epimorphism of BY -modules

F :
(⊗k

s=1V (bs)
⊗ns

)
λ

→ (⊗k
s=1Lλ(s) (bs)

)
λ
,

for any Y with distinct coordinates k1(Y ), . . . , kN(Y ).
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8.4. Construction of an eigenvector from a differential operator

Let D0 be an element of �Λ,λ,b,K . Let Y 0 be the kernel of D0. Then Y 0 is a point of the cell
�̄λ and Ki = ki(Y

0) for all i. In particular, we have BK = BY 0 .
Choose a germ of an algebraic curve Y (ε) in �̄λ such that Y (0) = Y 0 and Y (ε) are

generic points of �̄λ for all nonzero ε. Let t(ε) be the root coordinates of Y (ε). The algebraic
functions t

(0)
1 (ε), . . . , t (0)

n (ε) are determined up to permutation. Order them in such a way that
the first n1 of them tend to b1 as ε → 0, the next n2 coordinates tend to b2 and so on until the
last nk coordinates tend to bk .

For every nonzero ε, the vector v(ε) = ω(t(ε)) belongs to (V ⊗n)λ. This vector
is an eigenvector of the Bethe algebra BY (ε), acting on (⊗n

s=1V
(
t (0)
s (ε)

)
)λ, and we have

DBY(ε)

v(ε) = DY (ε) (see theorem 8.2).
The vector v(ε) algebraically depends on ε. Let v(ε) = v0ε

a0 + v1ε
a1 + · · · be its Puiseux

expansion, where v0 is the leading nonzero coefficient.

Theorem 8.3. For a generic choice of the maps F1, . . . , Fk , the vector F(v0) is nonzero.
Moreover, F(v0) is an eigenvector of the Bethe algebra BK , acting on

(⊗k
s=1Lλ(s) (bs)

)
λ

, and

DBK

F(v0)
= D0.

Proof. For any generator Bij ∈ BY (ε), the action of Bij on the U(glN [t])-module
⊗n

s=1V (t(0)
s (ε)) determines an element of End(V ⊗n), algebraically depending on ε. Since

for every nonzero ε, the vector v(ε) is an eigenvector of BY (ε), acting on (⊗n
s=1V

(
t (0)
s (ε)

)
)λ,

and DB
v(ε) = DY (ε), the vector v0 is an eigenvector of BY (0) = BK , acting on

(⊗k
s=1V (bs)

⊗ns
)
λ

,
and DBK

v0
= D0.

The glN [t]-module ⊗k
s=1V (bs)

⊗ns is a direct sum of irreducible glN [t]-modules of the
form ⊗k

s=1Lµ(s) (bs), where |µ(s)| = ns, s = 1, . . . , k. Since D0 ∈ �Λ,λ,b,K , the vector v0

belongs to the component of type ⊗k
s=1Lλ(s) (bs). Therefore, for generic choice of the maps

F1, . . . , Fk , the vector F(v0) is nonzero.
Since the map F1 ⊗· · ·⊗Fk , see (8.4), is a homomorphism of glN [t]-modules, the vector

F(v0) is an eigenvector of the Bethe algebraBK , acting on
(⊗k

s=1Lλ(s) (bs)
)
λ

, andDBK

F(v0)
= D0.

�

Given D ∈ �Λ,λ,b,K , denote by w(D) the vector F(v0) ∈ (⊗k
s=1Lλ(s) (bs)

)
λ

constructed
from D in section 8.4. The vector w(D) is defined up to multiplication by a nonzero number.
The assignment D �→ w(D) gives the correspondence, which is inverse to the correspondence
v �→ DB

v in part (v) of theorem 7.1.

8.5. Completeness of Bethe ansatz for glN Gaudin model

The construction of the vector w(D) ∈ (⊗k
s=1Lλ(s) (bs)

)
λ

from a differential operator
D ∈ �Λ,λ,b,K can be viewed as a (generalized) Bethe ansatz construction for the glN Gaudin
model, cf the Bethe ansatz constructions in [Ba, RV, MV1, MV2].

Theorem 8.4. If b1, . . . , bk are distinct real numbers and K1, . . . , KN are distinct real
numbers, then the collection of vectors{

w(D) ∈ (⊗k
s=1Lλ(s) (bs)

)
λ

∣∣D ∈ �Λ,λ,b,K

}
is an eigenbasis of the action of the Bethe algebra BK .

The theorem follows from theorem 7.1 and corollaries 7.2 and 7.4.
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